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Many of the boundary value problems traditionally cast as partial differential
equations can be reformulated as integral equations over the boundary. After
an introduction to boundary integral equations, this review describes some
of the methods which have been proposed for their approximate solution. It
discusses, as simply as possible, some of the techniques used in their error
analysis, and points to areas in which the theory is still unsatisfactory.
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1. Introduction

In the past decade there has been a dramatic growth of engineering interest
in boundary integral or boundary element methods, witnessed by the large
number of recent conference proceedings with these words in the title. At the
same time, the former rivalry between advocates of BIE (boundary integral
equation) and PDE (partial differential equation) approaches seems to have
softened, as the relative strengths and weaknesses of each have become better
understood.

Boundary integral methods may be used for interior and exterior prob-
lems, but have a special advantage for the latter. As a first introduction,
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consider (without equations!) the problem of acoustic scattering from an
object. Under appropriate idealization, the pressure in the region exterior
to the object satisfies the wave equation, with an appropriate (typically
Neumann) condition on the scattering surface, and a radiation condition
at infinity. With the time variable separated, the equation becomes the
Helmholtz equation. Regarded as a PDE problem, the setting is an infinite
three-dimensional region. The boundary integral formulation of this prob-
lem, on the other hand, lives in a region that is only two-dimensional and
finite — namely the surface of the scatterer.

We leave until the next section any serious discussion of boundary integral
formulations (and refer to Colton and Kress (1983) for the specific matter of
the Helmholtz equation), but some readers may find the following thought
useful: If we knew the Green’s function for this scattering problem, then
the pressure at any point could be found by quadrature over the surface.
But the true Green'’s function, incorporating the boundary condition on the
scatterer, is even harder to find than the solution itself. The next best thing
is to use the known fundamental solution, which is the Green’s function for
the infinite region with no scatterer. That incorporates the boundary con-
dition at infinity, and solves the differential equation, but takes no account
of the scatterer. To obtain a solution that satisfies the boundary conditions
on the scatterer we must therefore solve for an unknown function over the
surface of the scatterer. The equation to be solved is a (boundary) integral
equation.

Compared to PDE formulations, those involving BIEs are usually of lower
dimensionality (e.g. two-dimensional against three-dimensional in the earlier
example). On the other hand BIE methods almost invariably have dense
matrices, in contrast to the sparse matrices given by the PDE methods.
Moreover, the matrix elements are relatively hard to compute, involving
for example weakly or strongly singular kernels, perhaps (particularly in
the Galerkin method) several levels of integration, and difficult geometry.
Boundary integral equations rely fundamentally on the linear superposition
of solutions, and therefore are happiest when the underlying differential
equations are linear and homogeneous, and the material properties constant.
The PDE methods in contrast, being local in character, are not so fussy
about any of these matters.

Nevertheless, in the circumstances in which they are appropriate, bound-
ary integral methods can be very useful. And their applicability can be
widened by the coupling of PDE and BIE methods, using each in the re-
gions where they are appropriate. (See, for example, Zienkiewicz et al.
(1977), Johnson and Nedelec (1980), Costabel (1987) and recent reviews by
Hsiao (1990, 1991).)

In this review our concern is with the numerical analysis of boundary in-
tegral methods and, in particular, with certain recent developments. The
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review could not hope to be exhaustive, given the range and the complexity
of the subject. We are helped, however, by the existence of two other recent
reviews, by Wendland (1990) and Atkinson (1990). The former gives a com-
prehensive overview of the recent theory of the Galerkin method for BIEs via
the theory of strong ellipticity for pseudodifferential operators. It consists of
lecture notes for an audience with a strong PDE background; those without
such a background might find the present review a useful introduction. The
review by Atkinson (1990) lays particular stress on the problems involved
in the implementation of three-dimensional boundary integral equations,
such as the problem of evaluating the (often weakly singular) integrals over
boundary elements, and iterative methods for the solution of the dense lin-
ear systems that result. We shall not consider such questions in the present
review.

Nor can we do justice to the large body of recent work on (Cauchy)
singular integral equations in the plane (see, for example, Prossdorf and Sil-
bermann (1977, 1991), Préssdorf (1989)). Mixed boundary value problems
will be ignored (see Wendland et al. (1979), Lamp et al. (1984), Stephan
and Wendland (1985), McLean (1990)). And we will have nothing to say
about another topic currently attracting considerable interest, namely non-
linear aspects of BIE (see Ruotsalainen and Wendland (1988), Ruotsalainen
and Saranen (1989), Atkinson and Chandler (1990), Eggermont and Sara-
nen (1990), Ruotsalainen (1992); and, in connection with coupling of BIEs
and PDEs, Gatica and Hsiao (1989)).

Many aspects of linear integral equations relevant to BIEs and their linear
approximation are discussed carefully in the recent books by Kress (1989),
Hackbusch (1989), and Prossdorf and Silbermann (1991).

In the later part of the review we will give particular attention to problems
in the plane, because this has been an area which has seen considerable
recent activity, with many new methods proposed, some new techniques of
analysis, and some attempt to tackle the challenging problems posed by
corners. Perhaps some of these methods will subsequently be extended to
the even more challenging three-dimensional problems.

The structure of this review is as follows. In the next Section a sim-
ple introduction is given to the BIE formulation of the problem. Sobolev
spaces and the mapping properties of boundary integral operators cannot
be avoided in the modern numerical analysis of BIEs. They are introduced
gently in Section 3, and then, based on this knowledge, existence and unique-
ness questions are considered ir Section 4. Aside from their importance for
the basic theory, the Fourier series techniques introduced in Section 3 will
play a major role later in the paper, for both the analysis and design of
approximate methods.

Of all the methods mentioned in this review, the only one which is in a
reasonably satisfactory condition for a wide class of BIEs is the Galerkin
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method. At heart, this is because it rests on a variational principle. A
simple treatment is given in Section 5. Section 6 is devoted to the collocation
method, and Section 7 to the so-called qualocation method and its discrete
variants, for BIEs on plane curves. In general the analysis of these methods
for smooth curves is reasonably satisfactory, but problems remain where
there are corners. Section 8 summarizes some challenges for the future from
corner and other problems. At the same time it discusses briefly an extreme
case of a corner (the case of the logarithmic-kernel integral equation for a
slit), for which a complete analysis is available. Perhaps this case may give
some insight into the proper handling of general corners for this and other
problems.

It might reasonably be said that in its theoretical analysis the boundary
integral method is a decade or more behind the finite element method. A
defence might be that the problem is genuinely harder, because of the non-
local nature of integral operators. In any event, there can be no argument
that there is still much to be done.

2. Boundary integral equations

The reformulation of elliptic boundary value problems as boundary integral
equations has been discussed by many people, including Jaswon (1963) and
Jaswon and Symm (1977) for potential theory and elastostatics, Kupradze
(1965) for elasticity, and Colton and Kress (1983) for the Helmholtz equa-
tion. Clements (1981) considers general second-order elliptic problems,
Hsiao and MacCamy (1973) and Hsiao (1989) concentrate on first-kind form-
ulations, Ingham and Kelmanson (1984) consider biharmonic and singular
problems, and Wendland (1990) discusses a range of examples. In addition
there are many books and papers with an engineering flavour, among which
we may mention Hess and Smith (1967), Brebbia et al. (1984), Banerjee and
Watson (1986), and the introductory book by Hartmann (1989); for a more
complete bibliography of engineering works see Atkinson (1990).

The classical mathematical formulations are discussed thoroughly by
Mikhlin (1970). An excellent source for modern mathematical developments
is the recent review of boundary integral equations by Maz’ya (1991).

Here our aim is merely to introduce some of the principal ideas in a simple
setting, with no attempt at completeness or maximum generality.

2.1. Indirect methods
Consider the two-dimensional Laplace equation
Ap=0, teQ, (2.1)
subject to the Dirichlet boundary conditions
¢=¢g on I'=099, (2.2)
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where 2 is a simply-connected open domain in the plane with a piecewise-
smooth boundary I The simplest boundary integral formulation of this
problem is via the ‘single-layer representation’ of the potential ¢; that is,
one seeks a representation of ¢ in the form

(1) = —-71; /r log [t — s|2(s)dls, t €, 2.3)

where |t — | is the Euclidean distance between ¢ and s, dl is the element
of arc length, and z is an unknown function, the ‘single-layer density’, or
‘charge density’. The motivation is easily stated: because (27) 1log|t—s| is
the fundamental solution of the Laplace equation, (2.3) yields a solution of
the Laplace equation, no matter how z is chosen; thus all that remains is to
satisfy the boundary condition (2.2). Letting ¢ approach the boundary, and
assuming that the right-hand side of (2.3) is continuous onto the boundary,
we obtain

g(t) = —_1_/ log|t — s|z(s)dl;, teT.
T™Jr

This is an integral equation of the first kind (which merely means that the
unknown z occurs only under the integral sign). Introducing the single-layer
integral operator V defined by

Vo) = —% /r log |t — s|v(s)dl,, teT, (2.4)

we may write the integral equation as
Vz=g. (2.5)

That the integral on the right-hand side of (2.3) is continuous as ¢t — T
has been shown by Gaier (1976), under the assumption that z € Lp(T") for
some p > 1, and that the curve is piecewise smooth and has no cusps.

Next, consider the exterior problem

Ap=0, te,, (2.6)

where Q. = R?\Q and (2 is defined as for (2.1). Again we assume the Dirich-
let condition (2.2) on I', but this time we need also a regularity condition
at infinity,

¢ bounded at infinity. 2.7

Following Jaswon and Symm (1977), it is natural to seek a representation
in the form

#(t) = _;1; /P log [t — s|2(s) dl, +w, (2.8)

where w is a constant, and where, in order to satisfy the condition at infinity,
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the side condition
/ 2(s)dl; =0
r

is imposed. In this case the corresponding boundary integral equation is the
pair

Vz4tw=yg, /z=0. (2.9)
r

In the preceding paragraph we considered the exterior problem, but in fact
there is nothing to stop us from using the same approach, of an additional
unknown w and a side condition on 2, even for the interior problem (2.1),
(2.2). That approach has been advocated by Hsiao and MacCamy (1973), in
order to avoid the existence/uniqueness problems that can beset (2.5) (see
Subsection 4.3). There is a close relationship between the two approaches:
for example, if the pair w, z(1) satisfies (2.9) and if Vz(® = 1 then it is
obvious that z = 2(1) + w2(?) satisfies (2.5). For an elaboration of this
relationship see Sloan and Spence (1988a, Section 3).

Three-dimensional interior and exterior problems for the Laplace equation
with Dirichlet boundary condition (and with the regularity condition ¢(t) —
0 as [t| — oo in the exterior case) may be approached in a manner analogous
to (2.3), the fundamental solution in this case being the Newtonian potential,
the single-layer representation being

1 1
¢(t) = ﬁ‘/r It — SIZ(S) dSs, teQor Qea (210)

and the single-layer operator on I' = 92 being
1 1
= — d tel. 2.11
Va(t) = 5 /F T 0)ds., te (2.11)

The resulting integral equation, for both interior and exterior problems,
is (2.5).

2.2. The classical BIEs of potential theory

Returning to the two-dimensional case, the classical approach to the interior
Dirichlet problem (2.1) and (2.2) is to seek a ‘double-layer’ representation
for ¢, i.e.

60 = 1 [ (5o loglt o) s(s)dl

wJr

1 [n(s)-(s—1)
= - /F S t@ds ten (2.12)

Here the derivative is the normal derivative (with respect to s), in the direc-
tion of the outward unit normal n (i.e. the normal directed into the exterior
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region Q). This approach leads to a quite different kind of equation, because
the double-layer operator on the right of (2.12) is generally not continuous
onto I'. The following theorem is proved by Mikhlin (1970) for the case of a
Lyapunov curve, and by Hackbusch (1989) and Wendland (1990) for a curve
with corners.

Theorem 1 Let I be piecewise Lyapunov without cusps, and let z € C(T').
Then the integral

17/ 8 \
= /r ( 5o loB 1t - s|) 2(s)dls, t€RAT, (2.13)

has limiting values as t approaches I' from 2 and 2. separately. If ' € T is
a point at which I" has a tangent, the limiting values as t — t’ are

% /r (3?1 log |t' ~ sl) z(s)dls + z(t'), (2.14)

where the upper and lower signs hold for ¢t € Q and t € Q. respectively.

The proof proceeds by representing z(s) in (2.13) as z(t') + (2(s) — z(¢')),
and showing that the integral corresponding to the second term is continuous
onto I'. For the first term, because 2(t') can be taken outside the integral,
it is sufficient to prove the result for z = 1. Briefly, for s € " and for ¢t a
fixed point in ©, Q or I' (but not a corner point of I'), let p,0 be polar
coordinates of s — t, and let i be the angle between the outward normal
n(s) and the vector s — t. Then

_ n(s)-(s—1t) _ cos

10 t—s ’
and
_ pdb
dl = cos’
thus

1 P 1 1 2r if teq,
'/(an log|t—s|)dls=—/d0=— x if tel, (2.15)
T Jr \0ns 4 TL o if teQe.

That is the integral in (2.13) has in this case the value 2 or 0 for ¢ in 2 or
Q. respectively, while (2.14) has the value 1 + 1.
Let

Kz(t) = % /P ( 6?1, loglt—sl) 2(s) dl,
1 [n(s)-(s—1)
= /P S A@dl, teT, (2.16)
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be the double-layer operator on I'. Then if ¢/ is a point on I" at which a
tangent exists, the limiting values (2.14) become

Kz(t') + 2(t'). (2.17)

If we now return to the double-layer representation (2.12) of the interior
Dirichlet problem (2.1), (2.2), we see, by taking the limit as t approaches a
point on the boundary and using the theorem, that z satisfies

g(t) = Kz(t) + 2(t), t€T, t nota corner point. (2.18)

This is an equation of the second kind, in the nomenclature introduced by
Fredholm. If I' is a Lyapunov curve the kernel of the integral operator
K when appropriately parametrized turns out to be weakly singular (see
Mikhlin (1970)). Indeed, if T is a C2 curve then the kernel is even continuous.
In these cases the integral operator K is a compact operator on C(T"), and
the classical Fredholm theory applies.

For a region with corners K is no longer compact on C(I') (or indeed any
other space), and the Fredholm theory is inapplicable. However, it is by now
well understood that the double-layer equation (2.18) can still be a very ef-
fective tool (see, for example, Verchota (1984), Costabel (1988), Hackbusch
(1989), Maz’ya (1991)). In particular, Verchota (1984) shows that the jump
relations in Theorem 1 hold, almost everywhere on I', even for general Lip-
schitz curves (and hence for all piecewise Lyapunov curves without cusps),
and with the density function z allowed to be merely in Lo(T'), provided
that the double-layer operator K is defined with appropriate care. (Specif-
ically, one need only replace 3 by 2 and 2x by = in the three-dimensional
generalization (2.27) given below.) The precise nature of the operator K at
a two-dimensional corner was first elucidated by Radon (1919), and further
discussed by Cryer (1970); see also Atkinson and de Hoog (1984) for a study
of the Dirichlet problem for a wedge.

In the same way the exterior Dirichlet problem (2.6), (2.2), (2.7) may be
approached by the double-layer representation (2.12). In this case the jump
relations lead to an operator equation on I' with a different sign,

g(t) = Kz(t) — z(t), t€T, t nota corner point. (2.19)

The classical approach to the Neumann problem

o9
= Q —=h r 2.
Ap=0, teQ Z =honT, (2.20)
or to the corresponding exterior problem satisfying also (2.7), is via the
single-layer representation (2.3) or (2.10). It can be shown (Mikhlin, 1970)
that for z integrable on I' and ¢t ¢ I the potential ¢(¢) can be differentiated
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under the integral sign, giving for the two-dimensional case
1
Vo = = / (Vilog |t — s|)z(s)dis
r
1 t—s
= —;A Wz(S) dls, t¢l".

Letting ' denote a point on I' and 8¢/n the directional derivative in the
direction of the (outward) normal at t’, we have

o 1 t) - (t -
6_:’: = /P Wz(s)dts, tgT. (2.21)

The normal derivative has jump discontinuities analogous to those in Theo-
rem 1 as t — t’. For the case of a Lyapunov surface the limits as ¢t = ¢/ € T’
are (Mikhlin, 1970)

- K*z(t') £ 2(t)), (2.22)

where again the upper and lower signs hold for ¢ € Q and 2, respectively,
and

K*z(t) = 1/ (8?7, log|t—s|) z(s)dls,

= - /F %ﬁz(s)dls, tel. (2.23)

Note that the normal derivative in this case is with respect to ¢, whereas
in the double-layer operator (2.16) it is with respect to s. In fact these
operators are adjoints of each other.

It follows from this that the two-dimensional interior and exterior Neu-
mann problems, at least for a Lyapunov curve, are characterized by the
equation

h(t) = —K*2(t) £ z(t), teT. (2.24)

For a curve with corners comments similar to those made earlier for the
double-layer equation are applicable: the same equation holds for ¢ not a
corner point (Hackbusch, 1989).

For the three-dimensional Laplace equation the double-layer representa-

tion is
0= ()
% /F Ei“’ii(_sltlz(s)ds,, t¢T. (2.25)

Corresponding to (2.15) are the Gauss laws as a result of which jump rela-
tions analogous to those of Theorem 1 hold. This time, however, we state
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the more powerful version due to Verchota (1984). (The analogous two-
dimensional result also holds.) Here 2 is allowed to be an open, bounded,
Lipschitz domain with connected boundary T, and Q. = R3\Q2. Verchota
(1984) shows, by making use of the celebrated Coifman et al. (1982) the-
orem, that for 2 € Lo(T') the limit of (2.25) as t — t/ € I exists almost
everywhere on I', and has the value

Kz(t') £ z(t'), (2.26)

where the upper and lower signs are for the interior and exterior cases re-
spectively, and

1 n(s)-(s—1t)
Kz(t) = lim / MO B —Y ,(s)dS,, tel. (227
(t) = lim — AP ryp (s)dS, (2:27)
Thus the BIEs for the interior and exterior Dirichlet problem become, as in
the two-dimensional case,

g=Kztz. (2.28)

The operator K defined by (2.27) is a bounded operator on Lo(T), about
which we will have more to say when we turn to the question of existence
and uniqueness. The jump relations for the normal derivatives of the single-
layer potential extend to the three-dimensional situation in a similar way.
Thus one obtains again BIEs of the form (2.24) for the interior and exterior
Neumann problem, where for a general Lipschitz surface (Verchota, 1984)

K*2(t) = lim 217r / . %ﬂz(s) ds,. (2.29)

2.8. Direct methods

The methods discussed so far are termed indirect methods, because they
introduce quantities (namely, the single- or double-layer densities z on I")
which are not part of the problem as originally formulated. Direct methods,
in contrast, deal only with physically meaningful quantities, and for that
reason are often favoured.

Direct methods are based on Green’s theorem or its analogues. Suppose
we are considering the Laplace equation (2.1) for an interior domain 2 having
a smooth boundary, and suppose that ¢ € C?(2) and ¢ satisfies (2.1). Then
Green’s theorem gives (Mikhlin, 1970, p. 224)

q&(t):%/F [(Bi—slog [t — sl) o(s) —log |t — s|a¢(s)} s, tEQ.
(2.30)

An equation on the boundary may now be obtained by letting ¢ — I"' and
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using the continuity properties of the single-and double-layer potentials dis-
cussed earlier: we obtain

80 = 280 +00) + S (),

or

p=K¢p+V g¢ (2.31)

This equation is an identity, which holds whenever ¢ satisfies the Laplace
equation on 2. Thus far we have assumed stringent conditions on I" and ¢,
but these can be relaxed significantly (see, for example, Costabel (1988)),
to allow curves that are merely Lipschitz, and hence may have corners.

Now let us introduce boundary conditions. Consider first the case of the
Dirichlet boundary condition (2.2). Then (2.31) gives an integral equation
of the first kind for z = d¢/0n,

Vz=g—- Kg. (2.32)

Now suppose instead that the boundary condition is
o6
51’; = K,¢ + h, (2.33)

with k a constant. Then (2.31) becomes a second kind equation for ¢,
¢6=(K+&V)p+Vh. (2.34)

The direct method is particularly attractive in the common situation in
which the boundary conditions are mixed, for example with Dirichlet bound-
ary conditions imposed on I'; C T, and Neumann conditions on I'\I';. This
is because starting from the identity (2.31) (which is appropriate if we as-
sume still that the equation is the Laplace equation), we may easily develop
coupled boundary integral equations for 8¢/dn on I'; and ¢ on I'\I';.

3. Sobolev spaces and mappings of operators

The modern study of boundary integral equations and their numerical ap-
proximation needs some acquaintance with the mapping properties of bound-
ary integral operators in Sobolev spaces. In the case of the Galerkin method,
discussed in Section 5, information of this kind is needed for the analysis.
For some of the other methods discussed in later sections a precise under-
standing of the operators is even more critical, in that this understanding
is built into the very design of the methods. For that reason we defer the
discussion of numerical methods until we have more machinery available to
us.

We shall concentrate here on the two-dimensional case, with a few remarks
on the three-dimensional case at the end. We make every attempt to make
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the presentation as elementary as possible. A more detailed presentation
from a similar point of view has been given by Kress (1989).

We shall assume for the present that I' is a C! closed Jordan curve,
parametrized by ¢t = v(z), where

v:[0,1] - T, v isl-periodic, v € C!, [|V/(z)|#0.

Any integrable function defined on I can be represented after this paramet-
rization as a Fourier series,

v~ Z ,ﬁ(k)e21rik.1:,

kez

where

1 .
(k) =/ e~ 2riky(2)dz, k€ Z.
0

For any real number s we define the Sobolev norm ||v||s of v by

1/2
lvlls = (lf)(ﬂ)l2 + > [k If’(k)l2) - (3.1)

k3#0

When s = 0 the norm ||v||¢ is just the Ly norm. The norm [|v|, also has a
simple enough interpretation when s is a positive integer: if we recall that
the sth derivative of v has the Fourier series

v® ~ Z(21rik)3iy(k)e2"ikz,
kez

we see that, apart from an unimportant constant factor, ||v|, is essentially
the Ly norm of the sth derivative. (The term |#(0)|? is included on the
right of (3.1) to make this a norm, and not just a semi-norm.) Similarly, for
negative integer values of s the norm is essentially the Lo norm of the sth
anti-derivative of v.

Corresponding to the norm | - ||, we introduce the Sobolev space H?,
which may be defined as the closure with respect to the norm | - ||, of
the space of 1-periodic C* functions. The elements of H*® are 1-periodic
functions (or more generally distributions) with finite ||- || s norm. The space
H*¢ is a Hilbert space with respect to the inner product

(v, w)s = 8(0)B(0) + D [k[**d (k)b (k). (32)
k#0

An important inequality, holding for all real s and q, is
(v, w)s| < [[v)ls-all@llsta, veH™@, weH™* (3.3)

The proof is an easy application of the Cauchy-Schwarz inequality, starting
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from

(v, w)s = 0(0)B(0) + ), [kl 0 (k)|k|*+*0 (k).
k#0

We also have the stronger result

[V|ls—a = sup (v, w)s , VEH* (3.4)
weHs+e |[W|ls+a
with the supremum achieved if (0) = #(0), w(k) = |k| 2> (k) for k # 0.
In the jargon of the trade, H*~® and H**“ provide a ‘duality pairing’ with
respect to the inner product (-, -),.
Now that the spaces are defined, we turn to the boundary integral opera-
tors, beginning with the single-layer operator V. Writing ¢ = v(z), we have,
from (2.4),

1 1
Viu) = -3 [ loglu(@) ~ vl 20:)) IV W) dy
= 2 [ logv(a) - v(w)lui)dy
=: Lu(z), (3.5)
where we have introduced a new unknown function
u(y) = 5-20:0)) [V 3)] (36)

which incorporates the Jacobian |v/(y)| and also a convenient normalization
factor.

If the curve T" is smooth, or equivalently v € C*, the operator L defined
by (3.5) behaves rather like the corresponding operator for a circle. Let A
denote the operator L for the specific case of a circle of radius . With the
circle parametrized by t = (¢1,t3) = a(cos 27z, sin 27z), we have explicitly

1
Au(z) = —2/0 log |2asin n(z — y)| u(y) dy. (3.7

Then the operator L for the general curve I' can be written as
L=A+B, (3.8)
where

v(z) — v(y)

2asinw(z — y) u(y) dy- (3.9)

1
Bu(z) = —2/ log
0

For the case in which T is a C*® curve, whereas L and A have kernels
which contain logarithmic singularities, the kernel of B is a C*® 1-periodic
function of two variables. Thus for v € H® with s € R it follows that Bv is
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a C'™ function, from which we see easily that
B:H®*— H' forall steR. (3.10)

This fact will often allow us to treat B as a compact perturbation. (Be
warned, however, that this strategy fails if I"' has corners: for then B does
not have a smooth kernel, and the compact perturbation approach fails.)

The operator A (i.e. the single-layer operator for the case of a circle of
radius o) turns out to have the following extraordinarily simple Fourier
representation.

Proposition 1
Av(z) ~ —2log at(0) + Z v(k)ez’“’“ (3.11)

izo Kl

This follows from the well known Fourier cosine series representation, valid
for = # 0,

o 1 1
—log (2 Isin ﬂ'xl) = Z E cos 2rkx = z k 21nk:c’
k=1 k;éo ] I

or equivalently

—2log (2a [sinwz|) = —2loga + E - e2mikz
el

Equation (3.11) tells us that the effect of the operator A on the kth Fourier
component of v, k # 0, is to multiply that component by 1/|k]. Recalling

the definition of the Sobolev norm || - |4, it follows immediately that, for
v e H?

lAv|,41 < cllvlls, (3.12)
and hence

A: H® — H**L. (3.13)

Assuming for the present that I' is a C* curve, it follows that
L:H® — H**L, (3.14)

(Throughout the paper ¢ denotes a constant which may take different values
at its different occurrences.)

The mapping property (3.14) tells us, in effect, that L is a ‘once-smoothing
operator, but conveys only limited information about L. A more precise
statement is that L is a ‘pseudo-differential operator of order —1 and prin-
cipal symbol |¢|™". That means (following Agranovich (1979)) that L can

t
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be represented in the form

Lu(z) = Z o(k)e?mike +/ m(z, y)v(y) dy, (3.15)
ks#£0 |k|
where m is a smooth kernel. This follows from (3.8), (3.9) and (3.11).
Technically, the order is —1 because [£ | is a positive-homogeneous function
of degree —1. More general pseudo-differential operators exist, for example
the principal symbol may change sign with £, or may depend on z. For the
general form see Agranovich (1979) or Wendland (1990).

The identity operator I is a pseudo-differential operator of order 0 and
principal symbol 1. So too is the operator I + K arising in Section 2 from
the double-layer approach to the Dirichlet problem (see (2.16)) for the case
of a C* curve I, since the double-layer operator K has in that case a C*°
kernel.

Other pseudo-differential operators which arise in boundary integral meth-
ods are the Cauchy singular integral operator

v(s)
Cu(t) = /rs_t teT,
where s and t are taken to be complex numbers and the integral is to be
understood in the principal-value sense, which is a pseudo-differential op-
erator of order 0 and principal symbol sign &; and the normal derivative
of the double-layer potential (or the ‘hypersingular’ operator), which is a
pseudo-differential operator of order +1 and principal symbol [€].

For three-dimensional surfaces I' = 02 the Sobolev spaces cannot be
defined in quite such an elementary way, because there is no equivalent of
the 1-periodic parametrization. Rather, one must use the machinery of local
coordinate transformations, C*° cut-off functions, and Fourier transforms
(see, for example, Wendland (1990)). Correspondingly, the definition of
pseudo-differential operators needs to be based on Fourier transforms, rather
than Fourier series. (In fact, strictly speaking this is true even in the two-
dimensional case. However, the equivalence of the simpler Fourier series
approach has been demonstrated by Agranovich (1979); see also Saranen
and Wendland (1987) and McLean (1991).)

Nevertheless, the main results can be stated just as simply: for example,
assuming that I' is the smooth boundary of a simply connected open region,
the single-layer operator defined by (2.11) is a pseudo-differential operator
of order —1, while the operator I + K, with K the double-layer operator, is
a pseudo-differential operator of order 0, and so on.

For regions with corners all of the considerations in this section require
substantial modification. The Fourier series approach to the two-dimension-
al single-layer operator becomes less useful, because the kernel of the oper-
ator B is no longer smooth. For the case of a polygon, parametrized for
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example by arc length, the single-layer potential V' may still be represented
in the form (3.8) where B is given by (3.9), but now the kernel of B, far
from being smooth, is discontinuous at the vertices of the polygon. This
defect notwithstanding, Yan and Sloan (1988, Section 5) studied the single-
layer equation for a polygon in the space H? = Lo by using the fact that
the nonsmooth part of B is, in a certain precise way, not too large. How-
ever, this kind of analysis has only limited applicability to the analysis of
numerical methods, because the discretized operators typically have larger
norms — for example Yan (1990) in using this approach to study a collocation
method for this equation was forced to restrict attention to polygons with
angles no smaller than a certain minimum. A related problem is that the
boundary integral operators are no longer classical pseudo-differential oper-
ators. Considerable progress has been made in the study of these operators
for regions with corners and edges, see Costabel and Stephan (1985) and
Costabel (1988), with, for example, Mellin transforms replacing the Fourier
transforms of the classical theory. However, this is a difficult subject, into
which we will not venture further.

4. Existence and uniqueness questions
4.1. Introduction

Knowledge of existence and uniqueness of the exact solution is always a
precondition for a satisfactory numerical analysis. In the present context
we have an added interest, in that the methods used for the exact equation
often have a parallel in the analysis of approximate methods.

The classical boundary integral formulations are equations of the second
kind. The analysis of these, indicated in the next subsection, uses the clas-
sical Fredholm theory in the case of reasonably smooth curves or surfaces,
and more sophisticated variants when corners or edges are present.

In more recent times there has been great interest in other formulations,
particularly integral equations of the first kind such as those seen already
in Section 2. The extension of these to more general differential equations
has been considered by Fichera (1961), and more recently by Hsiao and
MacCamy (1973); see also Giroire and Nedelec (1978) and, for a review,
Hsiao (1989). We consider in detail the case of the logarithmic-kernel first-
kind equation in the plane, which has some interesting features, and then
consider briefly more general problems. In the analysis of these more general
problems the notion of strong ellipticity has come to play an important role.

4.2. Equations with second kind structure

We begin with the classical case, treated for example by Mikhlin (1970), in
which I is taken to be a connected C? curve or surface. In this situation the
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double-layer operator K defined by (2.16) or (2.27) is a compact operator
on Ly(T), as is its adjoint K*. As the Fredholm theory is applicable, it is
convenient to consider together the integral equations (2.18) for the interior
Dirichlet problem,

2+ Kz=g, (41)
and (2.24) for the exterior Neumann problem
z+ K*z2 = —h, 4.2

since these are mutually adjoint. An argument of potential theory (see
Mikhlin (1970, Chapter 18, Section 10 for the three-dimensional case, and
Section 13 for the two-dimensional case)) shows that the homogeneous equa-
tion corresponding to (4.2) has only the trivial solution. The Fredholm the-
ory (see, for example, Kress (1989)) then tells us that the same is true for the
homogeneous equation corresponding to (4.1), and that both (4.1) and (4.2)
have (unique) solutions z € Ly(T") for arbitrary g € Lo(T') or h € Ly(T) re-
spectively. In other words, both I + K and I + K* are boundedly invertible
in Lo(T).

Now consider the integral equation pair (2.19) for the exterior Dirichlet
problem,

z—Kz=—g, (4.3)
and (2.24) for the interior Neumann problem,
z—K*2=h, (4.4)

again mutually adjoint. This time the situation is slightly more interesting,
since the Gauss laws (stated explicitly for the two-dimensional case as (2.15))
are equivalent to

1-K1=0, (4.5)

where 1 denotes the function on I' whose values everywhere equal 1, so
that the solution of (4.3) is not unique. It can be shown (Mikhlin 1970,
Chapter 18, Sections11 and 13) that the solution space of 2 — Kz = 0 is one-
dimensional, thus from the Fredholm theory the same is true of the adjoint
homogeneous equation. Let f. denote the unique solution of

Je— K*fe =0, Afe =1 (4.6)

Then by the Fredholm alternative (4.3) has a solution z € Ly(T) if and only
if g is orthogonal to all solutions of the adjoint homogeneous equation, i.e.
if and only if

/F 9fe=0, (4.7)
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and similarly (4.4) has a solution if and only if

/F h=0. (4.8)

If h satisfies (4.8) and zp € Ly(T') is a particular solution of (4.4), it now
follows that the general solution of (4.4) is zg + a f, with a an arbitrary real
number. A unique solution lying in the space

I2 (D)= {z € Ly(T) : fp z= 0} (4.9)

is then obtained by the choice @ = — [ z. In other words, I — K* is

boundedly invertible in the space Z2 (T'). Similarly, I — K is boundedly
invertible in the space

Ly = {z € Ly(T) : /sze = 0}. (4.10)

These arguments assume considerable regularity of I", but it is now known
that these results hold in great generality. In particular, Verchota (1984)
shows for general Lipschitz curves and surfaces that it is still true that I+ K
is boundedly invertible in Ly(T") and that I — K* is boundedly invertible in

10',2 (T'). It then follows by duality (Verchota, private communication) that
I+ K* and I — K are boundedly invertible in Ly(I') and La(T") respectively.

The quantity f. introduced in (4.6) has an interesting interpretation.
Defining a potential 1 in € by

v(®) = -1 [loglt—slf(s)d, te

in the two-dimensional case, or
1 1
vt = 5 [ e fe)ds., tea

in the three-dimensional case, it follows from the jump relation (2.22) for
the normal derivative combined with (4.6) that
s

%_=0 onTl,

in which the normal derivative is the limit as I is approached from the inte-
rior 2. (In the case of a Lyapunov surface this holds everywhere on T'; for a
Lipschitz surface it is valid almost everywhere — see Verchota (1984.)) Since
¥ is harmonic, it follows from the usual uniqueness theorem for the interior
Neumann problem that 1 is constant in §2 and, hence, by the continuity of
the single-layer potential,

Vfe =constant onT (4.11)
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(almost everywhere, in the case of a Lipschitz curve). Thus f. is the ‘equi-
librium distribution’. In physical terms we may think of f. as the charge
distribution on I' (where the total charge is 1, since [ fe = 1) that gives
rise to a constant potential on I' (and hence also in the interior region ).
We conclude this subsection with the observation that integral equation
formulations are not always perfect reflections of the underlying boundary
value problem. The condition (4.7), which we have seen is necessary and
sufficient for the exterior Dirichlet integral equation (4.3) to have a solution,
is by no means a necessary condition for the exterior Dirichlet problem it-
self. Mikhlin (1970, Chapter 18) discusses a modification of the equation
which is solvable for every choice of the boundary-data function g € L2(T').
In a different direction, the exterior Neumann problem in two dimensions
has a necessary condition, namely f.h = 0 (this is shown for example by
Mikhlin (1970, Lemma 18.13.1)), which is not apparent in the integral equa-
tion formulation. Mikhlin shows (Lemma 18.13.2) that if this condition is

satisfied then [ 2 =0 (i.e. I + K™ is boundedly invertible in Lo (T), as well
as in Ly(I')). The general solution of the exterior Neumann problem in two
dimensions is then given by (2.8), where w is an arbitrary constant. Because
Jr z =0, this solution satisfies the boundary condition (2.7) at infinity.

4.3. The logarithmic-kernel BIE and the transfinite diameter

Before turning to more general equations, we consider the first-kind logarith-
mic-kernel integral equation in the plane

Vz(t) = —%/I:log [t —s|z(s)dls = g(t), teT, (4.12)

which we have seen arising in Section 2 from both direct and indirect ap-
proaches to the Laplace equation with Dirichlet boundary conditions. It
turns out that there is a genuine uniqueness/existence difficulty if the linear
scale of the problem is inappropriate (Jaswon and Symm, 1977; Hsiao, 1986;
Sloan and Spence, 1988a). Even for the case of a circle equation (4.12) may
run into trouble: from (3.11), which gives the explicit Fourier representa-
tion of Vz for a circle of radius a, we see that if the radius o is 1 then
z = constant implies Vz = 0 (since then loga = logl = 0). Thus the
solution is not unique for the case of a circle of unit radius. Moreover, for a
circle of this radius it is clear from (3.11) that there is no solution if g = 1.

It is well known that a similar problem arises no matter what the geometry
of I': there is always some linear scaling of I' for which the solution is
nonunique, and no solution exists for a constant right-hand side. (Jaswon
and Symm (1977) refer to a contour with this bad scaling as a ‘T’-contour’.)
The essential argument depends on nothing more than the properties of the
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logarithm: suppose that for a given contour I’ the equation
u

Vi®="2, ter, /F fo=1, (4.13)

has a solution f € L,(I") for some real number u. Then for the re-scaled
contour IV = C~1T, where

C = exp(—u) (4.14)

we find, for ' € IV and t = Ct/, that
-1
— [ og1¢ - s1£.(Cs") dly
m Jr

_C [ 1og(C 1t = ) fi(s) dis

T r
= ¢ (~togo™)} [ o)t +V£0)
(302

Thus the logarithmic-kernel equation on the rescaled contour I'’ has a non-
unique solution.

The number C = Cr is a length associated with the contour I': it is easily
seen that C,r = aCr. It is called the ‘transfinite diameter’ or ‘logarithmic
capacity’ of I'. (We prefer the former name, as it reminds us that Cr scales as
a length.) In the preceding paragraph the rescaled curve I'’ has a transfinite
diameter equal to 1. It also has a nontrivial solution of the homogeneous
logarithmic-kernel equation. This observation should persuade us that for
this equation contours of transfinite diameter 1 are to be avoided.

The argument in the preceding paragraphs depends on the existence of a
solution of (4.13). Fortunately, it can be shown that a solution exists under
very general conditions. For example, Hille (1962, p.280), assuming only
that I is a closed bounded set in the plane, gives a variational definition of
u = ur (the ‘Robin constant’), as

ur = inf (—/I:/Flog |t — s|du(t) dp(s)) , (4.15)

where the infimum is over all normalized positive measures p defined on I'
(i.e. u 2 0, frdpu = 1). The transfinite diameter Cr is then defined by (4.14).
(Actually Hille gives independent definitions of transfinite diameter and log-
arithmic capacity, but shows them to be equivalent, in Theorem 16.4.4.) He
shows moreover (in Theorem 16.4.3) that there exists a unique normalized
positive measure u. which achieves the infimum in (4.15), and that, except
possibly for ¢ in a set of transfinite diameter zero, one has (Hille, 1962,
Theorem 16.4.8)

- /Flog [t — s|due (s) =ur, teT. (4.16)
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Thus a solution of (4.13) always exists in the sense of a measure.
Some useful properties of the transfinite diameter established in Hille
(1962, Chapter 16) are:

1  the transfinite diameter of I does not exceed its Euclidean diameter;
2  if T lies inside IV, then Cr < Cprv;

3  the transfinite diameter of a circle of radius a is a; and

4  the transfinite diameter of an interval of length [ is /4.

For our present purposes it is sufficient to restrict I' to be the union
of a finite number of C? arcs, having only a finite number of points of
intersection. Note that this is both more restrictive and less restrictive than
we have assumed in preceding sections: more restrictive because we do not
allow general Lipschitz curves; less restrictive in that open arcs, cusps and
multiple points of intersection are allowed. Under these conditions it follows
from classical arguments that du. has the form of a classical distribution
fedl, where f. € L1(T'). Indeed, much more can be said about f.. Let

blt) = —= J o8t = slduc(s)

1
= -;/Flog|t—s|f€(s)dls, t € R?,

be the potential corresponding to the equilibrium distribution. By standard
arguments (e.g. Gaier (1976)) ¢. is continuous on R2, except possibly at
ends of arcs, cusps and points of intersection, so that

be(t) = Vo) = ';—I‘ ast —T.

With the same exceptions the jump relations (2.22) for the normal derivative
hold in a pointwise sense on I', from which it follows that

fe= —% (g:fi - ggj—) , (4.17)

where the normal derivatives are the limits as I' is approached from the
positive and negative sides (with respect to a normal with arbitrary but
fixed sense). The known regularity property of the solutions of the Laplace
equation now allows us to infer that f. is continuous on I' except at points
of intersection, cusps or ends. On the other hand f. is singular at a free
end: for example, for an arc lying on the positive z-axis, with one end at
the origin, in a neighbourhood of the origin we have

de(rcosf,rsinf) = t;—r +crt/? sin-g- +drsinf + O(r¥?), 0<0<2r,

from which it follows, using (4.17), that
fe(z) = cz™ 12 + O(z1/?) (4.18)
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in a neighbourhood of the end. Similar but weaker singularities occur at
corners; for details see Sloan and Spence (1988b). Note that f. € Lo(T) if
there is a free end. On the other hand if I is the piecewise-smooth-without-
cusps boundary of an open domain 2, then f. € Lo(I'), and is just the
function we met in the previous subsection as the solution of the second-
kind integral equation (4.6) (since (4.11) is equivalent to (4.13)).

For Cr # 1 the solution of (4.12), if it exists, is unique. One way to show
this is to decompose z € L1(T') in the form

z = afe+ 2, (4.19)
with
2% €84 (T) = {w € Ly(T) : /F w= o} . (4.20)

Since this decomposition is always possible with a uniquely determined o,

namely
a= / 2,
r

the representation (4.19) corresponds to a direct sum decomposition of
LI(F)’

L) = {af.: a €R}® L (T). (4.21)
Corresponding to the representation (4.19) we have

Vz = aVfe+Vz

= ;al + V2. (4.22)
By a change in the order of integration (using Fubini’s theorem), we see that
/F (Vo) fe = /F 2(Vfe) = % /F 20 =0, (4.23)

thus V :21—» I:l, where
L) = {w e LiD): /F wf. = 0}. (4.24)

Thus (4.19) and (4.22) correspond to a direct sum representation of V,
namely

V=Veorv, (4.25)

where
Ve:{af:a€R} > {al: a € R} (4.26)

with Ve fe = V f. = (u/7)1, and
Vi1 (D) — Ly(D). (4.27)
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The operator V., having one-dimensional domain and co-domain, is certainly
one-to-one if u # 0 (and hence if Cr # 1); and Doob (1984) shows that the

operator Vis positive definite (and hence one-to-one), in the sense that
- / / log |t — s|z0(s) dlszo(t) dls > 0 (4.28)
rJr

for all 2z Gil. (In fact Doob’s result holds for the much larger class of signed
measures with mean zero.) Thus uniqueness is proved.

When does a solution of (4.12) exist? If I' is a C'™ curve then the existence
can be discussed in terms of the Sobolev spaces introduced in Section 3. As
in (3.5) we define Vz(v(z)) = Lu(z), and as in (3.8) we write L as

L=A+B, (4.29)

where A is the single-layer operator for the case of a circle of radius a. It is
convenient to choose a = e~1/2, because then we see from (3.11) that A has
the especially simple Fourier series representation

Av(z) ~9(0) + 3 ITICTﬁ(k)e%"”. (4.30)

k#0

From this it follows that A is an invertible operator from H* onto H**! for
arbitrary s € R, that is

A:H®* — H" A7l Ht o H*, (4.31)
and, moreover, from the definition (3.1) of the Sobolev norms A is isometric:
| Avlls+1 = [|v]ls. (4.32)
Since A is invertible we may write (4.29) as
L=A(I+K), (4.33)
where
K=A"1B. (4.34)

Now from (3.10) it follows that
K :H® - H* for all s,t € R,

thus K is a compact operator on H®. If we assume that Cr # 1 then,
as discussed earlier, L is a one-to-one operator, thus, from (4.33), so too is
I+ K. It now follows from the Fredholm alternative that I + K is boundedly
invertible on H* or equivalently,

I+K:H*— H° 1-1 and onto. (4.35)
The final conclusion is that if Cr # 1 the operator L behaves just like the
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operator for the case of a circle, in that
L:H® - H**') 1-1 and onto. (4.36)

Thus the equation Lu = f has a solution u € H? for arbitrary f € H*+1.

For T a closed Lipschitz curve Verchota (1984) shows, for Cr # 1, that
(4.12) has a solution z € Lo(I") for arbitrary g € Ly(T') := {w € Lo(T) :
w' € Ly(T')}, v’ being the (tangential) derivative on I.

Before leaving the single-layer equation, it should be said that for the
three-dimensional first-kind boundary integral equation Vz = g, with V'
given by (2.11), no uniqueness difficulty arises; there is no scaling for which
the homogeneous equation has a nontrivial solution, and in fact V, for
any scaling of T, is a positive definite operator. The difficulties that arise
with (4.12) may be thought of as an idiosyncracy of two dimensions.

4.4. More general equations — strong ellipticity

Many of the boundary integral equations that arise in practice are ‘strongly
elliptic’ and hence ‘coercive’ with respect to an appropriate Hilbert space.
We shall see that this not only provides a simple way of establishing the ex-
istence and uniqueness of the exact solution (in an appropriate weak sense),
but also gives a very satisfactory framework for analysing the Galerkin
method (see Section 5).

For simplicity we restrict ourselves to boundary integral equations which
can be written as single equations of the form

Lu=f. (4.37)

In the two-dimensional case it is convenient to assume that the boundary
curve I" has already been parametrized in the manner of (3.5), so that u
and f are l-periodic functions. In the three-dimensional case u and f are
functions on I'. By restricting ourselves to equations of the form (4.37)
we are excluding systems of equations, and also equations such as (2.9), in
which there is a scalar unknown in addition to the unknown function u.
For generalizations see Stephan and Wendland (1976) and Wendland (1983,
1985, 1987).

We shall say that (4.37) has a ‘weak’ solution u if, for all x in an appro-
priate space,

(Lu, X)O = (f, X)Oa (438)
where

(v,w)0=/01 v or /rvw (4.39)

in the two-dimensional or three-dimensional case respectively. In one impor-
tant circumstance the existence of a weak solution is guaranteed: if for some
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Hilbert space H the bilinear form (Lg,)o is both bounded and coercive,
i.e. if for some positive constants D and v

and
Re(L¢,4)o 2 v|¢l} Vo € H, (4.41)

then the Lax-Milgram theorem (Gilbarg and Trudinger, 1983, Theorem 5.8;
Ciarlet, 1978) is applicable:

Theorem 2 (Lax-Milgram) Assume that a(@,%) is a bounded, coercive
bilinear form on a Hilbert space H, and that F' is a bounded linear functional
on H. Then there exists a unique u € H such that

a(u,x) =F(x) Vx€H.

It follows that Lu = f has a weak solution u € H for each f for which
(f,)o is a bounded linear functional on H.

A simple example is provided by the single-layer equation for a circle of
radius o < 1, already discussed in the preceding subsection. From (3.11)
and (3.1) we have in this case

(Lo, ¥)o = (A¢,¢)o——210ga¢(0)¢(0)+zlkl¢(k (k)

k#0
< max(—-2loga,1)||¢ll_1/2ll%ll-1/2 (4.42)
and
(L$, #)o 2 min(—2log &, 1)||8[12, 2, (4.43)

so that (L¢, @) is bounded and coercive with respect to the Sobolev space
H~1/2, Thus the logarithmic-kernel equation Lu = f for a circle of radius
a < 1 has a weak solution u € H~Y/2 for each f € H'/2. (Recall that H*
and H™*° are a dual pair with respect to the L2 inner product (-, - )¢ — see
(3.3), (3.4).) This is consistent with the previously established result (4.31).

How can we establish, for more general boundary integral operators, that
the conditions (4.40) and (4.41) are satisfied for some Hilbert space H? For
boundary integral operators on smooth closed curves or surfaces, the theory
of pseudo-differential operators, already discussed briefly in Section 3, can
be used to good effect. This theory, and its application to the Galerkin
method, has been discussed with admirable thoroughness in a number of
places, for example Stephan and Wendland (1976), Wendland (1983, 1987,
1990) and Hsiao and Wendland (1981). Here we content ourselves with a
brief look at a two-dimensional case.
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Suppose that L is an operator on 1-periodic functions defined by

1
Lu() = 3 a(z, kyo(k)e?™* + / m(z,y)o(y)dy, z€[0,1, (4.44)
k#0 0

where m € C*°([0,1] x [0, 1]), and a(z, §) is a 1-periodic C* function of z for
each £ # 0, and for some 8 > 0 and each z € R is a positive-homogeneous
function of degree 8 in £&. Then L is a pseudo-differential operator of order
B and principal symbol a(z,€). (The logarithmic-kernel operator defined
by (3.8)-(3.11) is a pseudo-differential operator of order —1 and principal
symbol |£]71.) A pseudo-differential operator of order 8 is (Hérmander,
1965; Wendland, 1987) a continuous operator from H? to H°# for all
o € R. In particular, therefore, L is a continuous operator from HA/2 to
H~A/2_ From this and (3.3) it follows that

[(Lv, w)o| < I Lvll-gy2llwligsz < cllvligallwlia,

so that (4.40) is satisfied with H = HA/2,
Now suppose, in addition, that the principal symbol a(z,£) is ‘strongly
elliptic’, that is to say that for some y > 0

Rea(z,£1) > pu Vz €[0,1). (4.45)

Then it is known (Kohn and Nirenberg, 1965, p.283) that, for any £ >0, L =
Lo + M(e), where Ly is coercive with respect to H?/2,

Re(Lo¢, #)o 2 (1 —e)ll#ll5,, Vo € H, (4.46)

and M = M(e) is a compact operator from H?/2 to H=#/2, The addition
of the compact term M leaves the conclusion of the Lax~Milgram theorem
unaltered, provided that L remains one-to-one (Hildebrandt and Wienholtz
(1964), Remark 3). Thus it follows in the strongly elliptic case that the
equation Lu = f has a weak solution u € H8/2 for each f € H5/2,

It should be noted that the pseudo-differential operator arguments need
serious modification as soon as corners or edges appear (see, for example,
Costabel and Stephan (1985)).

A different and in some ways more versatile approach is to found the strong
ellipticity theory for boundary integral operators on the well studied strong
ellipticity properties of the associated elliptic PDEs. For further details, see
Costabel and Wendland (1986). This approach has the advantage that it
remains available even when corners are present, and indeed even for general
Lipschitz curves (Costabel, 1988).

5. The Galerkin method

Most theoretical treatments of the boundary element method give great
attention to the Galerkin method, a method originated in the context of the
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differential equations of elasticity by a Russian engineer (Galerkin, 1915).
The present treatment will be briefer, not least because of the very complete
discussions that exist elsewhere (see, for example, Stephan and Wendland
(1976), Hsiao and Wendland (1977, 1981), Wendland (1983, 1987, 1990),
Rannacher and Wendland (1985, 1988)). However, the example of the two-
dimensional logarithmic-kernel integral equation will be worked out in some
detail.

Let us assume, as in (4.37), that the problem is expressible as a single
equation of the form

Lu=f, (5.1)

with u and f 1l-periodic in the two-dimensional case, and functions on I" in
the three-dimensional case.

Let S}, be a finite-dimensional space within which the approximate solu-
tion is to be sought. Typically, S}, is defined by partitioning I' into a finite
number of pieces with simple geometry (e.g. plane or curved triangles) and
maximum diameter k, on each of which the restriction of S}, is a piecewise
polynomial space with respect to an appropriate local parametrization (e.g.
one in which the element boundary is a triangle). Continuity conditions
across elements may or may not be imposed, depending on the circum-
stances, one important constraint being S, C H, where H is the space in
(4.40-1). (For further details see, for example, Brebbia et al. (1984).) Then
the Galerkin method is: find u; € Sy, such that

(Lun,x)o = (f,x)o VY X € S, (5.2)

where the inner product is defined by (4.39).
While the Galerkin method is the theorist’s favourite, it is in truth not

easy to implement. Let {¢;,...,¢n} be a basis for S,. Then we may write
N

un =) a;d;, (5.3)
j=1

and the equations to be solved in practice are
N

Z(L¢ja¢k)0aj = (f’ ¢k)0, k= 1,...,N, (54)

j=1
in which each matrix element on the left, even in the two-dimensional case,
is a two-dimensional integral — one integral for the integral operator, and one
for the inner product. In the three-dimensional case four levels of integration
are needed for each matrix element. And the difficulty is compounded by
the fact that the matrix in the boundary element method is invariably dense.
The error analysis for the Galerkin method rests on the variational for-
mulation of the exact problem given in the preceding section. Suppose that
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the bilinear form (L¢, ), satisfies the boundedness and coercivity proper-
ties (4.40) and (4.41) for some Hilbert space H, and that u € H is the weak
solution of the exact equation (5.1). Then, provided only that S, C H,
Céa’s lemma (Ciarlet, 1978) ensures that the Galerkin equation (5.2) has a
unique solution uy, € Sy, whose error in the || - ||z norm is within a constant
factor of the error of best approximation by an element of Sj:

Theorem 3 (Céa’s lemma) Assume that the bilinear form (L¢, ) satis-
fies (4.40) and (4.41), and that Lu = f has the weak solution u € H. As-
sume also that S}, is a finite-dimensional subspace of H. Then the Galerkin
approximation (5.2) has a unique solution uy € Sy, which satisfies

D
— < — i —_ .
lup — ullg < ” v:ggh [lon — ull & (5.5)

Proof. The existence and uniqueness of up, follows from the Lax-Milgram
theorem applied to S;, as a subspace of H. Then (4.40), (4.41) and (5.2)
give, for arbitrary v, € Sh,

viwn —ull}y < |(L(un —w),up — w)o| = |(L(up — u), v — u)o)
< D|up - ullgllvn — ullz,

from which the result follows. O

The result (5.5) has the nice property of reducing the Galerkin error esti-
mation in the ‘natural’ or ‘energy’ norm ||-|| i to a problem of approximation.

Now let us be more explicit, and assume that I' is a smooth curve in the
two-dimensional case, or a smooth surface in the three-dimensional case, and
that L is a strongly elliptic pseudo-differential operator of order 3. Then, as
noted in the preceding subsection, L = Lo + M, where L is bounded and
coercive with respect to the space H?/2, and M is a compact operator from
HP/2 4o H—B/2, Tt can be shown (Hildebrandt and Wienholtz, 1964) that the
addition of the compact term leaves the essential conclusion of Céa’s lemma,
unaltered, provided L remains one-to-one: specifically, it follows that hg > 0
exists such that uj, € S}, exists for h < hg, and satisfies

llun — ullg/2 < Cv’fggh llvn — ullg/2, (5.6)

for some constant ¢ > 0.

We now specialize further to the case of the logarithmic-kernel integral
equation. In the following example we indicate ‘power of h’ results for the
Galerkin error not only in the energy norm, but also in a range of other
Sobolev norms. We shall also return to the same example later, in other
sections, to illustrate other numerical methods.

Ezample. Let T’ be a smooth curve with Cr (the transfinite diameter) not
equal to 1, and let L be the logarithmic-kernel operator on [0,1] defined
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by (3.5). Let S be the space of 1-periodic smoothest splines of order r (i.e.
degree < r — 1), where r > 1, on a partition

My:0=z0<z1< - <zN-1<zN =1, (6.7)
with
hy =Tp41— 2k, k=0,...,N—1, (5.8)
and
h = max hg.

That is, v € Sy satisfies v € C"%(R), and v|(;, 5,,,) € Pr—1. Assume,
moreover, that h — 0. Then it is known that for —o00 < ¢t < s < r and
t<r-— %, there exists a constant ¢ depending only on ¢ and s such that

inf |lop — ulls < ch®*Ylulls ifue H. (5.9)
vLES)

(For a discussion see, for example, Arnold and Wendland (1983).) In par-
ticular, therefore, it follows from (5.6) that the Galerkin error estimate in
the natural norm is

llup — ull_1/2 < A2 |ul, ifue H" (5.10)

Error estimates in ‘lower’ norms can now be deduced by a duality argu-
ment (‘Nitsche’s trick’), apparently first used for BIEs by Hsiao and Wend-
land (1981). We illustrate this for the most extreme case, namely the ||-|| .1
norm, in which the maximum order of convergence can be doubled over that
obtained in (5.10) for the natural norm. For simplicity, we assume here that
T is a circle of radius e~1/2, so that L = A, in the language of (4.29)
and (4.30). Using (3.4), (3.2) and (4.30), we have

fun—ullres = sup SATBDN2_ g (A= u)0do
veHT [[vls veHT vl
- sup (A(up — u),v —vp)o
veHr llv]l-
o =yl — vl
T veHr "‘U",. ’

where vy, is an arbitrary element of Sj, which makes its appearance at the
second-last step because we have used again the Galerkin equation (5.2).
Thus, by (5.10) and another application of the approximation theory re-
sult (5.9) we obtain

ch™+1/2|lv||,
llvll»
ch? |y, (5.11)

IN

lun — ull—r—1 llup — ull_1/2 sup
veEHT

IA
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Finally, error estimates in higher Sobolev norms than the || - ||_;/2 norm
may be established if the sequence of meshes is quasi-uniform; i.e. if there
exists ¢ > O such that

hy >ch Vk,

with ¢ independent of h. From this follows the inverse estimate (see, for

example, Arnold and Wendland (1983)), for r <o <1 — ,
|l £ ch™°lv||; for v € Sp. (5.12)

We also make use of the fact (again see Arnold and Wendland (1983) for
a discussion) that for given u € H? there exists ¥, € Sy, independent of t,
suchtha.tfort,<_s$ra.ndt<r—%

flu — P le < ch®~t||u)), for u € H?,

with ¢ independent of u. Then for —% <t<r- % it follows that

lun —ulle < llup —Pulle + lvn — ulls
< T lug — Yn |-t + [[90n — ulle
< ch T lup — ullr—1 + ATVl — ull ey + [[0n — ulle
< k™l (5.13)

Here we have assumed, for simplicity, that u € H". Results for u with lesser
smoothness, and correspondingly fewer powers of h, are easily written down.

The highest-order convergence in this example — of order O(h?"*1) - is
obtained in the || - |_,—1 norm. At first sight it may not be clear why
‘negative norm’ results of this kind are of interest, given that they cannot
be observed directly. The answer is that we do indeed see the benefit if we
are interested finally not in u, but rather in an inner product (u,w)o, where
w is a reasonably smooth function. For from (3.3) we have

|(up, w)o — (v, wo| = |(un — u,wo| < [lun — ull—r-1llwllr41,  (5.14)

so that the @O(h?"*!) order of convergence in the example is observable if
w € H™t1, As a specific example of such an inner product, suppose that
in the case of the logarithmic-kernel integral equation we are interested in
computing, in the context of the indirect method for the interior Dirichlet
problem for the Laplace equation, the potential ¢(¢) given by (2.3) at a point
t € T. Then from (2.3) and (3.6)

o) = —% /F log [t — s|2(s) dl,

1
- 9 /0 log [t — v(y)|u(y) dy
— o (5.15)
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where w; is the C* function defined by

wi(z) = —2log|t —v(z)|, t¢r, z€R. (5.16)
Thus if
1
#n(®) = -2 [ loglt —v(w)lun(v) dy (5.17)
then
Br(t) — o(t) = (un, we)o — (u, wt)o, (5.18)

and (5.14) applies.

Many modifications of the Galerkin method have been proposed for the
case of smooth plane curves. Arnold (1983) has shown that the order of
negative-norm convergence can be made arbitrarily large by the use of an
unsymmetric (or Petrov-Galerkin) approximation, in which the trial space
remains a spline space but the test space is a space of trigonometric polyno-
mials. McLean (1986) obtains exponential rates of convergence in stronger
norms by the use of trigonometric polynomials for both test and trial spaces,
if the exact solution is smooth. Atkinson (1988) obtains a similar rate
of convergence with a fully discrete version of the Galerkin method with
trigonometric polynomials.

The Galerkin-collocation method (Hsiao et al. 1980, 1984), as the name
suggests, has some relation to both the Galerkin and collocation methods.
In this method the logarithmic-kernel integral equation for a smooth curve,
in the modified form (2.9) as advocated by Hsiao and MacCamy (1973), is
handled by decomposing the operator into two parts: a principal part, which
is a convolution operator, treated by a Galerkin method; and a second part,
which is an integral operator with a smooth kernel, treated by a discrete
approximation. (The separation into the two terms is similar to that in (3.8)
and (3.9), but is different in detail.) The analysis exploits the close relation
to the Galerkin method, yet the implementation is much less laborious, since
the matrix corresponding to the principal part is a Toeplitz matrix, and so
is representable as a vector; and moreover it is independent of the particular
curve, and so can be computed once and for all. An extensive discussion of
applications is given in Hsiao et al. (1984).

Before leaving the Galerkin method, we may mention that Rannacher and
Wendland (1985,1988), by the clever use of weighted Sobolev norms, have
established uniform error estimates for the Galerkin approximation for the
single-layer equation on closed curves and surfaces.

6. The collocation method

For the solution of boundary integral equations in practice the collocation
method is generally the method of choice, becaunse it is so much easier to
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implement than the Galerkin method. It does, however, have disadvantages:
a theoretical analysis is available only in special cases (see later); the con-
vergence rate in negative norms is often inferior; and the matrix is generally
not symmetric even if the operator is self-adjoint.

Let us assume, as in the discussion of the Galerkin method, that the
equation to be solved is a single equation of the form

Lu=f, (6.1)

where u and f are either 1-periodic functions on R, or are functions on I in
the three-dimensional case. Let S} be the finite-dimensional space within
which the approximation is to be sought. In the collocation method one

chooses also a set of ‘collocation points’ ti,...,tn, where N = N}, is the
dimension of S};. Then the collocation method is: find u, € Sy such that
Lup(ty) = f(te), k=1,...,N. (6.2)

Needless to say, the choice of the collocation points is a very important
question, one to which we shall return.

Letting {¢1,...,¢n} be a basis for S}, and writing u, in the form (5.3),
the equations to be solved in practice are

N
E L¢j(tk)aj = f(te), k=1,...,N. (6.3)

i=1

Clearly, the labour involved in setting up the matrix is much less than in the
Galerkin method: in the two-dimensional case each matrix element requires
just one integration.

Theoretical analyses of the collocation method are available in a variety
of situations. For the double-layer equation (2.18) on smooth curves or sur-
faces, the standard analysis for Fredholm integral equations of the second
kind (see, for example, Atkinson (1976) or Baker (1977)) is available. For
regions with corners we saw in Section 2 that the double-layer integral oper-
ator is no longer compact, so that the standard theory is not applicable, but
at least in the plane case considerable progress has nevertheless been made
(see, for example, Atkinson and de Hoog (1984), Chandler and Graham
(1988), Elschner (1988)). In the latter papers piecewise-polynomial colloca-
tion is shown to be stable and of optimal order, provided the approximating
space is suitably modified near the corner, and the mesh is appropriately
‘graded’. (The mesh is graded at a corner z, with grading parameter ¢ > 0,
if the points of the partition satisfy |z — 2| = ck?,k =0, 1,..., near 2).

For more general boundary integral equations on smooth plane curves an
important contribution to the theoretical study of the collocation method
is that of Arnold and Wendland (1983). In that paper certain collocation
methods are shown to be equivalent, after integration by parts, to Galerkin
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methods with nonstandard inner products. As a consequence stability and
convergence are established, with almost no restrictions on the mesh. The
principal limitation is that the analysis is restricted to smoothest splines
of even order or odd degree (for example, continuous piecewise-linear func-
tions), and to the particular case of collocation at the knots.

For the case of the logarithmic-kernel equation Lu = f with L defined
by (3.5), and for smoothest splines of (even) order r on the partition (5.7),
the convergence result of highest order obtained by Arnold and Wendland
(1983) is

lun = ull—1 < ch™ulr, (6.4)

if u € H". That is, the highest order of convergence obtainable in any norm
is O(h™*1), compared with O(h?*1) for the standard Galerkin method (see
(5.11)). The nonstandard Galerkin method to which the collocation method
is equivalent has as inner product the Sobolev inner product (-, -),/2, de-
fined by (3.2). The Arnold and Wendland (1983) analysis also handles
more general pseudo-differential operators L, provided that the bilinear form
(L$, %)y 2 is coercive with respect to an appropriate norm. For pseudo-
differential operators of order § the highest order convergence result they
obtain is

llun ~ ulls < ch™ 7 lullr, (6.5)

compared to

lun — ull-rtp < ch®* P |lu.

for the standard Galerkin method.

A generalization this above approach to piecewise-linear collocation on
the torus has been given by Hsiao and Prossdorf (1992).

The present theoretical situation for the collocation method is much less
satisfactory for approximation by piecewise-constants, or other splines of
even degree. For the very special case of smooth plane curves, smoothest
splines and a uniform mesh, a satisfactory analysis has been developed (de
Hoog, 1974; Saranen and Wendland, 1985; Arnold and Wendland, 1985;
Saranen, 1988) by the use of Fourier series methods, combined with local-
ization arguments. In this analysis the collocation points must always be
chosen in an appropriate way; for a full discussion of the correct choice
see Wendland (1990). For example, for the case of the logarithmic-kernel
equation with a uniform mesh and smoothest splines of even degree, the col-
location points should be taken to be the midpoints of each sub-interval. In
this case it is known (Saranen and Wendland, 1985; Arnold and Wendland,
1985) that the result (6.4) holds. More surprisingly, in this even degree case
an order of convergence one power of h higher can be obtained if u has the
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appropriate smoothness: Saranen (1988) shows that
lun - ull-2 < ch™2lful41, (6.6)

ifue H™1,

In the following section we shall see that the collocation method is a
special case of the so-called ‘qualocation’ method. At that point we will
demonstrate the Fourier series method of analysis. A generalization of the
Fourier series techniques to the case of equations on a torus has been given
by Costabel and McLean (1992).

Another situation for which a reasonably satisfactory collocation analysis
exists is that of singular integral operators, or systems of singular operators,
on plane curves; see Prossdorf and Schmidt (1981), Prossdorf and Rathsfeld
(1984), and, for an overview, Prossdorf (1989). Here the principal tool is a
localization technique, combined with the observation that translationally
invariant operators yield circulant matrices (in the case of closed smooth
curves) or Toeplitz matrices (in the case of open arcs). The circulant matrix
methods are closely related to the Fourier series techniques mentioned ear-
lier. A generalization to multi-dimensional equations is given by Prossdorf
and Schneider (1991).

In spite of the successes in the analysis of the collocation method, there
remain some large gaps. Most strikingly, there is apparently no analysis
as yet of piecewise-constant collocation for the single-layer equation (2.5)
on a three-dimensional sphere. Fourier series methods have no obvious ex-
tension, because on a sphere there is no such thing as a uniform partition.
In the two-dimensional analogue, however, significant progress with nonuni-
form partitions has recently been achieved: Chandler (1989, 1990, 1991) has
shown for the logarithmic-kernel integral equation that piecewise-constant
collocation at the midpoints is stable and convergent even for an essentially
arbitrary mesh. Chandler’s analysis exploits the specific structure of the
collocation matrix for this problem.

7. The qualocation and related methods

In this section we consider the qualocation method (Sloan, 1988; Sloan and
Wendland, 1989; Chandler and Sloan, 1990), and its fully discrete variants
(Sloan and Burn, 1991; Saranen and Sloan, 1992). For a review with a more
limited focus but some more details, see Sloan (1992). An earlier review,
restricted to the qualocation method, is that of Wendland (1989).

7.1. The qualocation method

The qualocation method (or ‘quadrature-modified collocation method’) is an
approximation which aims to achieve an order of convergence better than
that of the collocation method, while not being too much more expensive to
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implement. Significant results are so far available only for boundary integral
equations on smooth plane curves, thus we shall assume that the equation
to be solved is a single equation of the form

Lu=f, (7.1)

where u and f are l-periodic functions on R.

The qualocation method is characterized by three things: a trial space S},
which is the finite-dimensional space within which the approximate solution
is to be sought; a test space T}, of the same dimension as Sj; and a quadrature
rule @;. Given these three ingredients, the method is: find u; € S}, such
that

(LUh, X)h = (fr X)h v X € Th, (72)

where
(v, w)n = Qu(vw). (7.3)

Letting {¢1,...,¢n} be a basis for Sy, and {x1,...,xn} a basis for T}, the
equations to be solved in practice are

N
E(L¢j)Xk)haj = (fa Xk)ha k= 1""’N' (74)
j=1

The method is in effect a semi-discrete version of the Petrov—Galerkin
method, i.e. the Galerkin method with different test and trial spaces. It
reduces to the Petrov—Galerkin method if (-, -) is replaced by the exact
inner product (-,-). The novel feature of the qualocation method lies in the
discretization: for we shall see that the recommended quadrature rules can
be curious indeed.

First, though, we note the important fact that the qualocation formalism
includes the collocation method as a special case. For if the quadrature rule
is

N
Qrg =Y weg(te), (7.5)
£=1
an N-point quadrature rule with nonzero weights wy,...,wy, then (7.2) is

equivalent to
N
Zwl[Luh(tl) - f(tl)]Yk(tl) =0, k=1,...,N,
£=1

which is in turn equivalent to the collocation equations (6.2) if the N x N
matrix {X(t¢)} is nonsingular. It is easy to see that quadrature rules with
fewer than N points necessarily make the matrix in (7.4) singular, thus only
quadrature rules with N or more points are of interest.
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At the present time theoretical results are available only if S}, is a space
of smoothest splines of order r,r > 1, and the partition Il is uniform, with
h = 1/N. For the trial space Tj Sloan (1988) and Sloan and Wendland
(1989) used a trigonometric polynomial space,

-2

This choice was inspired by the Arnold and Wendland (1985) analysis of the
collocation method, in which, effectively, the collocation method was treated
as a qualocation method with an N-point rectangle rule for Q. Here,
however, we shall follow Chandler and Sloan (1990) in taking T} = S}, the
space of smoothest splines of order r/,7' > 1, on the partition IT;. In practice
a low-order spline test space is likely to be preferred over the trigonometric
polynomial test space, because it admits a (B-spline) basis in which each
element has small support. (If »’ = 1 the value of the piecewise-constant
test function at a point of discontinuity must be understood to be the mean
of the left-hand and the right-hand limits. This becomes important if a
quadrature point is a point of the partition.)

Following Chandler and Sloan (1990), the operator L in (7.1) is taken to
be of the form

T} = span {ez”ij’” : —% <j< E}

where A has as its Fourier series representation either
Av(z) ~ D(0) + Y _ |k|Po(k)e? k= (7.7)
k#0
or
Av(z) ~ D(0) + Y _ sign k|k|?5(k)e* =, (7.8)
k#0

where 3 € R, and where
B:H®* — H' foralls,tecR. (7.9)

In the language of the paragraph containing (4.44), L is a pseudo-differential
operator of order 3 and principal symbol either |¢|? or sign£|¢|#. Since the
principal symbol is constant, i.e. independent of z, the operator A can be
represented as a convolution. If (7.7) holds then the principal symbol is
even, and A is said to be even. Similarly, if (7.8) holds then A is said to
be odd. An important special case is that of the logarithmic-kernel integral
operator: setting 3 = —1 and taking the even case, the operators L, A and
B defined by (3.5), (3.7-11) are exactly of the prescribed form, if the free
parameter o is set equal to e1/2,
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The quadrature rule is taken to be a composite rule of the form
N-1J

£+
Qg =h 3 S wig(“ £rs), (7.10)
=0 j=1
where
0<&i<b< - <€ <], (7.11)
and
J
Swi=1 w;>0 for j=1,...,J. (7.12)
=1

Thus @, is the composition, onto each subinterval of the partition, of the
J-point rule

J
Qg =2 w;g(&), (7.13)
i=1
a quadrature rule defined in [0, 1].

How should the rule @ be chosen? Since the choice J = 1 is equivalent to
a collocation method, it is natural to consider J = 2. Chandler and Sloan
(1990) restrict attention to J = 2 rules that are symmetric, i.e. having the
property that if £ is a quadrature point then either £ = 0, or else 1 — £ is
also a quadrature point with the same associated weight as £. There are

just two kinds of symmetric rule with J = 2, namely

Qg = wg(0) + (1 — w)g(3), (7.14)
where 0 < w < 1, and
Qg = 39(6) + 39(1-9), (7.15)

with 0 < £ < % The first of these is analogous to Simpson’s rule, and
becomes Simpson’s rule if w = %; and the second is analogous to 2-point
Gauss quadrature, and becomes so if £ = 0.21132 48654 .... We shall see,
however, that these are usually not the recommended values of w or £.
Rather, the value of w or £ should be the unique value that will increase the
maximum order of (negative-norm) convergence. In some circumstances, for

example, the recommended value of w will turn out to be w = % (giving the

3 4 9
£, 7 rule’).

The next two theorems give the highest-order results obtained by Chan-
dler and Sloan (1990) for the two kinds of quadrature rule. First we collect
the main assumptions.

Assumption Y: the equation to be solved is (7.1), with L given by (7.6),
(7.9), and one of (7.7), (7.8); L is one-to-one; the partition II, is uniform;
the test space is S}, the space of smoothest splines on IIj of order r' > 1;
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and r’ has the same parity as r if A is even and the opposite parity if A is
odd.

Theorem 4 Assume that ¥ holds, that @ is given by (7.14), with O<w<
1, and that r > g+ 1.

(i) The qualocation equation (7.2) has a unique solution u, € Sy for all A
sufficiently small.
(ii) If r and A are both even or both odd then u; satisfies

llun — ullg < ch™Pllul,. (7.16)
It satisfies also
llun — ullg—2 < " *2|lullr42 (7.17)
if and only if, in addition,
2r-A-1 1

W= T (7.18)
(iii) If r and A are of opposite parity then uy satisfies
llun — wllp—1 < h™ P+ fullrss. (7.19)
It satisfies also
llun — wllg-3 < ch™#*3||u 43 (7.20)
if and only if, in addition,
r—
w= %’f_l;_ll— (7.21)

A sketch of the proof of this theorem follows Theorem 5. A first observa-
tion about the content of the theorem is that (7.16) is the same as (6.5), the
fastest convergence result obtained by Arnold and Wendland (1983, 1985)
for the collocation method and L a pseudo-differential operator of order 3;
and the one higher order result (7.19) is the improved collocation result ob-
tained by Saranen (1988) for the case of an even operator and odd r, already
referred to in Section 6. More interestingly, we see in (7.17) or (7.20) that
the maximum order of convergence jumps by yet another two if (and only
if) w has the precise values specified in (7.18) or (7.21).

For the particular case of the logarithmic-kernel operator A is even and
B = —1, so if r also is even then the special value of w is

2r -1

w

which yields
llun — ul|-3 < ch™ 3 )|ullrs2, (7.23)

whereas the best result available if w has any other value is the O(h™*1)
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result (6.4). For example, in the piecewise-linear case (i.e. r = 2) the value
w = 3/7 yields an O(h®) result, compared with @(h3) for the collocation
method. If r is odd then the choice

2r+1 -1
yields
llun — ull—4 < ch™||ullrys, (7.25)

whereas the best result if w has any other value is the O(h™+2) result (6.6).
Thus in the piecewise-constant case (i.e. 7 = 1) the value w = 3/7 again
yields an O(h®) result, compared with O(h3) for the midpoint collocation
method.

We should note, though, that the higher order of convergence apparent
in (7.17) or (7.20) require both higher regularity of u and a more negative
norm in which to observe the error. It follows that in some applications the
maximum order of convergence will not be achieved.

In the next theorem the recommended quadrature points for the rule
(7.15) of 2-point Gauss type are the zeros of the function

o
Ga(z) = 2:1 ni" cos 2mnz, (7.26)
n=
for appropriate values of a > 1. It is known that G, has exactly two zeros
on (0,1), located symmetrically with respect to the midpoint. Some values
of the first zero (taken from Sloan and Wendland (1989)) are given in Table
1.

Table 1. The unique zero of G4 in (0, 1)

a Zero of G,

1/6
0.21132 48654
0.23082 96503
0.24033 51888
0.24511 88417
1/4

8 ot oo -

Theorem 5 Assume that Y holds, that @ is given by (7.15) with 0 < £ <
%, andthatr>ﬁ+%.

(i) The qualocation equation (7.2) has a unique solution uj, € Sy, for all h
sufficiently small.
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(ii) Ifr and A are both even or both odd then u, satisfies (7.16). It satisfies
also (7.17) if, in addition, £ is the unique zero in (0, %) of G,_p.

(iii) If » and A are of opposite parity then u, satisfies (7.19). It satisfies
also (7.20) if, in addition, ' > 3 and ¢ is the unique zero in (0, %) of
Gr—ﬁ+1-

The complete proofs of Theorems 4 and 5 are lengthy. Here we indicate
only the outline, with main emphasis on the argument that determines the
special values of w or £. (For a more complete sketch of that part of the
argument, see Sloan (1992).)

The main task is to prove the theorems for the special case L = A, the
result then being extended to the full operator L = A + B by a standard
perturbation argument, given, for example, by Arnold and Wendland (1985).
Because A is a convolution operator, and so invariant under translation, and
because also the partition is uniform, the qualocation matrix in (7.4) can be
made diagonal if the basis functions of S} and S}, are chosen so as to behave
in an appropriate way under translation by h. An appropriate basis for S
is {4, : p € AN}, where

AN={ueZ —%<u<%} (7.27)
and
u=0,
Yu(z) = z: (w/k)ye2mbe, e A%, (7.28)

Here Ay, = An\{0}, and k¥ = u means that k — p is a multiple of N. (If
r = 1 the Fourier series, which is then not absolutely convergent, is to be
understood as the limit of the symmetric partial sums.) That 1, really is a
spline of order r on the uniform partition IIj follows from the fact that the
Fourier coefficients satisfy the appropriate recurrence relation for a function
v € Sp, namely (Arnold (1983), extending Quade and Collatz (1938))

k"o(k) = u"o(p) if k = p.

Since qﬁp(u) = §,, for u,v € Ay, the expansion coefficients of v € §j, in
terms of {1} are just the Fourier coefficients; that is

v= E o(p)p, for v € Sp. (7.29)
BEAN

The function ¥, is, in essence, the spline equivalent of the trigonometric
polynomial e2™#%, In particular, the two functions behave in exactly the
same way under translation by h.

With a basis {¢;, : £ € An} for S}, defined in a similar way, and with the
aid of the expression (7.7) or (7.8) for A, it is a straightforward if tedious
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matter to evaluate the matrix element (A, v, )s explicitly, and to verify
that it vanishes for p # v. In detail, we find (Chandler and Sloan, 1990,

Lemma 1)

1 ﬁu—V—O
(A, Y )n = { (signp)|ulPD(uh) if p=ve Ay (7.30)
if u# v,

where the factor (sign u) in this equation is present only if A is odd, and
where
J

Z 11+ 0(,9)] [1 + 86, 9)) (7.31)
with i
Ay =y #ZO G +y),, e?mitt, (7.32)
and with
(&, y) = |yI"* #5_;) T I’ e?mité (7.33)

if r and A are both even or both odd, or

. r— sign £ :
Q(Ev y) = s1gn yly! o Z ﬁ_ﬁeszﬁ (734)
&40 y

if r and A are of opposite parity.

Since we will have to divide by D(uh), for stability of the method it is
essential that D(y) be bounded away from zero for y € [-1,1] - a prop-
erty that is not quite trivial, since it is well known that some collocation
methods (e.g. midpoint collocation if » and A are both even) are unstable.
Nevertheless it is shown in Chandler and Sloan (1990), by appeal to known
properties of trigonometric sums, that under the conditions of the theorem
there exists d > 0 such that

D) 2d forallye[-1,3]

It now follows from the qualocation equation (7.4) and from (7.29) and
(7.30) that

W { (z‘éu, ¢6)5z if p=0, 35
Up(p sign p ' . x 7.35
WP Dy A% ¥k T € A

After evaluating the right-hand side (using e.g. Chandler and Sloan (1990,
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Lemma 1)), we find

N Y p =0,
0 =56 = { Ay D + mag, ey, 0

where

J
E@y) = Y Q) [1+87E,y)], (7.37)
i=1
1Bl < Y nPlam)), (7.38)
n—O
|Ra(p)] < Elnl"lu n)l, (7.39)
n=p
and where
Y=Y
n=p e

The error expression (7.36) is the key to the theorems. The quantities Py,
and Rp(p) in the expression depend only on the Fourier coefficients i(n)
for which |n| > N/2, and so can be made to decay as rapidly as desired
by requiring u to be in a sufficiently high Sobolev space. The first term
for u € A} is in a quite different category, because it is this that imposes
an absolute restriction on the maximum order of convergence that can be
achieved: if E(y) = O(|y|?) as y — 0 then the best order of convergence we
can hope for, given (7.36), is O(h*). For this reason p is called by Chandler
and Sloan (1990) the ‘order’ of the particular qualocation method.

If r and A are both even or both odd then it follows from (7.32), (7.33)
and (7.37) that, for any symmetric rule Q,

E@) = 23w Z°°§,2_’;‘5’+0<1yr-ﬂ+2). (7.40)
=1

(Note that r' > 2, since under the present assumptions r’ is even.) Thus the
qualocation method is of order r — 3 — unless, that is

J 00
ij Z cos 21rZ§J —o, (7.41)

j=1 =1

in which case the order jumps to r — 8 + 2. For a rule Q of the form (7.14)
the latter equation becomes

wlz_:lﬁ—_ﬁ—ﬁ—(l—w);_:l =
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or by a standard zeta function trick

- - w0 - ] S =0

which is satisfied if and only if w has the value given by (7.18). And for a
rule @ of the form (7.15) it is immediately obvious that (7.41) is satisfied if
and only if ¢ is the zero in (0, %) of the function G,_g defined by (7.26).

Similarly, if r and A are of opposite parity (and hence r’ is odd) then it
follows from (7.32), (7.34) and (7.37) that, for Q a symmetric rule,

r— cos 2m¥, Bt min(r’
E(y) = —lyI""*'2(r - ﬁ)z Z ok ﬁ+f:+0(|y| B-+min ,3)>‘

Thus the method is of order r — 8 + 1, unless
cos 2mé¢;
2:1 Z r—B+1 =0 (7.42)
j=

in which case it is of order r — 8 + 3, provided r’ > 3. The special values of
w or £ in rules of the form (7.14), (7.15) are as before, but with r replaced
by r + 1.

The orders of convergence in every case are now seen to correspond ex-
actly to the maximum orders of convergence in Theorems 4 and 5. For the
remainder of the proof we refer to Chandler and Sloan (1990). In particular,
Theorem 2 of that paper shows that all the results follow once the order and
stability of the method has been established.

The qualocation analysis indicated above conforms to one of the great
paradigms of numerical analysis: first identify the form of the leading term
of the errors, then adjust the method so as to eliminate that leading term.
Looked at that way, the 3/7, 4/7 qualocation rule is no stranger than, say,
the formulas of Romberg integration.

7.2. Fully discrete variants

We have seen that the Galerkin method for (7.1) requires two levels of in-
tegration for each matrix element, whereas the collocation and qualocation
methods need only one level. But the following variant of the qualocation
method proposed by Sloan and Burn (1991) for the logarithmic-kernel inte-
gral equation on a smooth curve requires no exact integrals at all.
In this method, the exact integral (3.5) is first replaced by its rectangle
rule approximation
N-1
Lyu(z) = —2h z log |v(z) — v(kh)|u(kh). (7.43)
k=0
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Then one proceeds as in the qualocation method: find u, € S;, such that

(Lrun, ) = (fix)p YV X € Th. (7.44)

Here (-, - )» is defined again by (7.3) and (7.10-13), but now the parameters
in the rule @ must be chosen differently, as the quadrature rule has the added
burden of compensating for the damage caused by replacing L by L.

In working out this method uj is evaluated only at the points of the
rectangle rule (7.43), thus the trial space S, becomes significant only if one
wants to interpolate between the points. For the analysis, however, the
choice of trial space is important. In Sloan and Burn (1991) a trigonometric
trial space

S, = {e*™#* : p € AN} (7.45)

was assumed.

The following result was established in Sloan and Burn (1991) for the case
of a circle by Fourier methods similar to those used above, but for general
smooth curves was proved only under additional restrictions. The result for
general curves was proved without the extra restrictions by Saranen and
Sloan (1992).

Theorem 6 Assume that the equation to be solved is Lu = f, where
L is the logarithmic-kernel integral operator in (3.5); that the transfinite
diameter is different from 1, so that L is one-to-one; that the partition I,
is uniform; that the trial space is given by (7.45); that the test space is S},
the space of smoothest splines of order r’; that r’ is even; and that

Qg = 39(6) + 39(1 - 6),
with 0 < € < % Then

(i) Equation (7.44) has a solution up € Sy, for all h sufficiently small.
(ii)) For s > —1, uy, satisfies

llun — ulls < ch'|lullss1. (7.46)

It satisfies also
llup — ulls < ch3|[u||s+3 (7.47)

if and only if £ = %.

Versions with maximum order higher than O(h3) have been foreshadowed
in Sloan (1992).

An alternative version proposed by Saranen and Sloan (1992) replaces
the right-hand side of (7.44) by the exact inner product. Thus the method
becomes: find u, € Sy, such that

(Lnuwn,x)n = (fix) YV x €T (7.48)



BOUNDARY INTEGRAL METHODS 331

This has an advantage if u is of low regularity, in that the condition s > —1
in Theorem 6 is replaced by s > —r’ — 1. On the other hand the estimate
(7.47) is replaced by the more restrictive estimate

”uh - u“s < Chmin(rl’a)”u“3+min(r',3)- (749)

8. Corners, cracks and challenges

At many points we have mentioned difficulties caused by corners. Part of
the problem is that the techniques of analysis (e.g. pseudo-differential op-
erator arguments, compactness of operators, Fourier series methods) break
down when corners are present. Part of it is that corners force us to consider
modifications (such as mesh grading near the corner) which further compli-
cate the analysis. Sometimes (as in the case of the double-layer equations)
the presence of corners forces changes in a method (such as modifications in
the trial space for the collocation method near a corner), even though there
is little or no evidence that such changes are needed other than to make the
proofs go through. It is fair to say that even for plane problems corners still
present many theoretical challenges.

Consider, for a moment, the qualocation method and its discrete variants,
described in Section 7. Once corners are present the Fourier series arguments
outlined there break down, because it is no longer possible to write the
boundary integral operator in the form L = A + B with A given by (7.7) or
(7.8) and B a smoothing operator as in (7.9). Yet numerical experiments
(Chandler and Sloan, 1990; Sloan and Burn, 1991) suggest very strongly
that the methods can remain useful, and even yield orders of convergence
similar to those predicted for smooth curves, if the mesh is suitably graded
in a neighbourhood of the corner.

Curiously, there is one extreme case of a corner, namely the exterior
Dirichlet problem for a slit or crack, for which the theoretical understanding
is reasonably complete. Taking for simplicity a straight slit of length 2+, and
forgetting the boundary condition (2.7) at infinity, the single-layer equation
(2.5) becomes

— = [T roglt = sla(s)ds = g0, te (—m). (8.1)
-

Applying the transformation (Yan and Sloan, 1988)

t = ~ycos 2nz, 8 = ycos 27y, (8.2)

f(z) g(~ cos 2rz), (8.3)
u(z) = ~vz(ycos 2nz)|sin 27z, (8.4)
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we obtain (on noting that f and u are even and 1-periodic)

— /: log |y(cos 2mz — cos 2mwy)|u(y)dy = f(z), z€R. (8.5)

The cosine transformation used here has a long history, particularly in
connection with the airfoil equation (Multhopp, 1938; Weissinger, 1950;
Schleiff, 1968a,b). Its particular advantage in the present context is that it
reduces the problem to one we have met already, namely the logarithmic-
kernel equation for a circle: using only trigonometric and logarithmic iden-
tities and the fact that u is even, it can easily be shown (see Prossdorf et al.
(1992), Lemma 2.1) that (8.5) is equivalent to

~2 [ logl@n 2 sinn(e - yluy = f@), zER (86)

But from (3.7) this is just the single-layer integral equation for a circle of
radius (y/2)Y/2.

The transformations leading to (8.6) tell us that the solution 2 of (8.1)
usually has singularities of the form (yFt)~1/2 at the two ends (this follows
from (8.4)). It also tells us, since a circle has a transfinite diameter equal
to its radius (see Subsection 4.3), that equation (8.1) for z is singular when
(v/2)Y/? = 1, or 4y = 2. (This corresponds to the fact, mentioned in Sub-
section 4.3, that the transfinite diameter of an interval is one quarter of its
length.)

More importantly for our present purposes, this transformation lies at the
heart of several theoretical analyses of numerical methods for the logarith-
mic-kernel integral equation on open arcs. These include Atkinson and Sloan
(1991), which gives an analysis of a discrete Galerkin method; Sloan and
Stephan (1992), analysing a collocation method with Chebyshev polynomi-
als; Prossdorf et al. (1992), adapting to an open arc the discrete method of
Sloan and Burn (1991) discussed in Subsection 7.2; and Joe and Yan (1991,
1992), analysing a piecewise-constant collocation method on a graded mesh,
with the collocation points taken to be the midpoints with respect to the
transformed variable z in (8.2) rather than with respect to the original vari-
able t.

That work of Joe and Yan (1991, 1992) establishes the (surprising) con-
clusion that the order of convergence can be increased by a seemingly in-
significant shift in the collocation points. Indeed, the order of convergence
established by Joe and Yan is even higher than the apparent order of con-
vergence of the Galerkin method for the same piecewise-constant basis and
the same graded mesh (Yan and Sloan, 1989). A lesson for the future seems
to be that in both the theory and the practice of mesh grading we need to
take more seriously than in the past the transformed independent variable
implicit in the mesh grading: if the partition is uniform with respect to the
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transformed variable x, then perhaps we should specify all collocation points
and quadrature rules with respect to that variable.

A serious challenge for many boundary element methods is the extension
of the analysis to irregular meshes on plane curves, and thence to three-
dimensional surfaces, which is after all where the main game is. This cer-
tainly poses a problem for methods such as the qualocation method which
rely on Fourier series methods for their analysis. It is even a problem, as we
have remarked before, for a method as simple as piecewise-constant colloca-
tion for the single-layer equation on a sphere.

There is still much to be done. Those of us who enjoy the field are happy
that this is so.
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